Enantioselective Synthesis of Optically Active β-Aminoalcohols via Asymmetric Reduction

Byung Tae Cho* and Yu Sung Chun
Department of Chemistry, Hallym University, Chunchon 200-702, Republic of Korea

(Received 14 January 1992)

Abstract: Optically active β-aminoalcohol derivatives were prepared by asymmteric reduction of the corresponding aminoketones with a chiral borohydride, K glucoride (1).

Optically active β -amino- α -aryl(or alkyl)ethanol derivatives are not only important in phamaceuticals such as β -adrenergic blocking agents, but are also used as useful catalysts for asymmetric carbon-carbon bond formation reactions. One of the most convenient methods for the preparation of the amino alcohols may be the asymmetric reduction of the corresponding α -amino ketones. Several successful achievements for such reduction have been accomplished by asymmetric hydrogenation using chiral phosphine-rhodium or ruthenium catalysts. However, only one example of the reduction with a chiral hydride reagent has been reported. Recently, we reported that a new chiral borohydride, K glucoride (1) provided high

optical yields in the reduction of alkylaryl ketones, relatively hindered aliphaticketones and α -keto esters.

In the course of our study on asymmetric reduction of some functionalized ketone derivatives with 1, we found that this reagent reduced α -aminoketones (2) in high yields to the corresponding β -aminoalcohols (3) with good enantioselectivities. We now report our preliminary results for the reaction.

The aminoketones were prepared by reaction of the corresponding α -bromoketones and amines. The reduction was carried out with 1.1 equiv of 1 at -78 °C in THF. As shown in Table 1, all of the aminoketones (2) examined are smoothly reduced to give 3 in high yields. In the case of aromatic α -aminoketones (2a-2 f), the corresponding β -aminoalcohols (3a-3 f) were obtained with 44 - 73 % ee. It is noteworthy that all of the aminoalcohols obtained are consistently enriched in the S enantiomers and increasing the steric bulk of R¹ and R² groups in 2a-2 f leads to higher optical induction. However, the reduction of aliphatic aminoketones afforded low optical induction (9 - 33 % ee). Using this methodology, the study of the enantioselective synthesis of optically active β -amino- α -arylethanol derivatives having pharmacological activities is in progress.

Table 1. Asymmetric Reduction of α-Amino Ketones with 1 in THF at -78°C.

entry	2			time	yield ^b	3		
	R	R1	\mathbb{R}^2	h	%	[α] _D ²² , deg.	% cc	abs. config.
a	Ph	Bn	H	3	83°	8.96 (c 4.78, H ₂ O)	32 ^d (48) ^e	S
b	Ph	Bn	Me	6	82	29.33 (c 2.36, EtOH)	51 ^f (56) ^e	S
c	Ph	Me	Me	3	87	29.24 (c 1.19, MeOH)	58 ⁸	S
d	Ph	Et	Et	3	81°	47.41 (c 5.02, H ₂ O)	73 ^h	S
е	Ph	- (CH ₂) ₅ -		3	82	31.86 (c 1.13, EtOH)	60 ⁱ	S
f	Ph	-(CH,OCH,)-		3	91	27.55 (c 3.02, MeOH)	(44) ^e	S
8	Me	Me	Me	3	90	- 2.06 (c 0.99, MeOH)	ُ نو	R
h	Me	Et	Et	3	92	-10.95 (c 4.07, EtOH)	24 ^k	R
i	t-Bu	- (CH	2)5 -	24	89	24.14 (c 1.96, EtOH)	33 ¹	S

[H / Cpd] = 1.1. b Isolated yields after silica gel column chromatography. c HCl salt. Based on $[\alpha]_b^{22}$ 27.8 (c 5.0, H₂O); ref. 3. The figures in parentheses indicate % ee determined by HPLC chiral column (Chiralcel OD, Daicel Co.) Based on the calculated $[\alpha]_b^{20}$ -57.21 (c 2.3, EtOH); ref. 7. Based on the calculated $[\alpha]_b^{20}$ -50.27 (c 1.61, MeOH); ref. 7. Based on $[\alpha]_b^{22}$ 64.6 (c 5.0, H₂O); ref. 3. Based on the calculated $[\alpha]_b^{20}$ 52.89 (c 1.12, EtOH); ref. 7. Based on $[\alpha]_b^{22}$ 22.85 (c 1.02, MeOH); ref. 8. Based on $[\alpha]_b^{24}$ - 46.2 (c 4, EtOH); ref. 9. Based on the calculated $[\alpha]_b^{22}$ -72.96 (c 1.91, EtOH); ref. 2.

Acknowledgment: We are grateful to the Organic Chemistry Research Center sponsored by the Korea Science and Engineering Foundation for financial support.

References and Notes

- Roth, H. J.; Kleemann, A. "Pharmaceutical Chemistry Vol. 1: Drug Synthesis" pp. 144, Ellis Horwood LTD. 1988.
- 2. Oguni, N.; Matsuda, Y.; Kaneko, T. J. Am. Chem. Soc. 1988, 110, 7877.
- 3. Takeda, H; Tachinami, T; Aburatani, M; Takahashi. H.; Morimoto, T.; Achiwa, K. Tetrahedron Lett. 1989, 30, 363 and references cited therein.
- Kitamura, M.; Okhuma, T.; Inoue, S. Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Ohta, T.;
 Takaya, H.; Noyori, R. J. Am. Chem. Soc. 1988, 110, 629.
- 5. Angeloni, A. S.; Marzocchi, S.; Scapini, G. Gazz. Chim. Ital. 1977, 107, 421.
- K glucoride: Potassium 9 O (1,2;5,6 di-O isopropylidene α D glucofuranosyl) 9-boratabicyclo[3.3.1]nonane; Brown, H.C.; Cho, B. T.; Park, W. S. J. Org. Chem.. 1988, 53, 1231
- 7. Miyano, S.; Lu, L. D-L.; Viti M.; Sharpless, K. B. J. Org. Chem.. 1985, 50, 4350.
- 8. Chan, M. M-L.; Robinson, J. B. J. Med. Chem. 1974, 17, 1057.
- 9. Raasch, M. S.; Brode, W. R. J. Am. Chem. Soc. 1942, 64, 1112.